
PISCES: A Tool for Predicting Software Testability

Je�rey M. Voas Keith W. Miller Je�ery E. Payne
Room 108 Dept. of Computer Science Room 108

1121 Arlington Blvd. 101 Jones Hall 1121 Arlington Blvd.
RST Corp. College of William & Mary RST Corp.

Arlington, VA 22209 Williamsburg, VA 23185 Arlington VA 22209

Abstract

Before a program can fail, a software fault must

be executed, that execution must alter the data state,

and the incorrect data state must propagate to a state

that results directly in an incorrect output. This paper

describes a tool called PISCES (developed by Reliable

Software Technologies Corporation) for predicting the

probability that faults in a particular program location

will accomplish all three of these steps causing program

failure. PISCES is a tool that is used during software

veri�cation and validation to predict a program's testa-

bility.

1 Introduction

This paper presents a tool (PISCES) developed in

C++ that implements the PIE technique de�ned in

[8, 20, 6, 19, 22]. PIE (for Propagation, Infection, and

Execution analysis) statistically estimates the proba-

bilities of

1. a particular location in a program will be exe-

cuted according to a particular input distribution

(Execution),

2. a mutation of a location in a program will cause

a change to the state of the program after it is

executed (Infection), and

3. random values that are injected into a variable

at a particular location in execution (meaning a

change made to the state of the program) dis-

cernibly a�ect program output (Propagation).

The process for predicting the probability that a

location is executed follows: the program is instru-

mented to print out when a particular location is ex-

ecuted. The instrumented program is then run some

number of times with inputs selected at random ac-

cording to some input distribution of the program.

The proportion of inputs that cause the print com-

mand to be invoked in the instrumented program out

of the total number of inputs on which the instru-

mented program is executed is an estimate of this

probability. This probability estimate along with oth-

ers for the software can then be used to predict the

software's testability.

The process for predicting the probability that a

fault in a location will a�ect the data state of the pro-

gram is: a syntactic mutation is made to the location

in question. The program with this mutated location

is then run some number of times with inputs selected

at random according to the program's input distribu-

tion. The proportion of times that the program with

the mutated location produces a di�erent data state

(given that the mutated location is executed) than the

original location out of the total number of times that

the original location is executed is an estimate of this

probability. For example, suppose that a program is

executed 10 times, and during the 10 executions the

original location is executed 1000 times, and 345 data

states produced by the mutated program are di�er-

ent than what the original \unmutated" location pro-

duces, then our probability estimate is 0.345 with an

associated con�dence interval. It should be further

mentioned that in general, many di�erent syntactic

mutants are made for a single location, each yielding

a probability estimate in this manner. These proba-

bility estimates for this location along with those for

other locations in the software can then be used to

predict the software's testability.

The process for predicting the probability that a

data state error will cause program failure given that

a location creates a data state error follows: program

execution is halted just after executing the location, a

randomly generated data value is injected into some

variable, and program execution is resumed. This pro-

cess simulates the creation of a data state error dur-

ing execution. We term this process \perturbing" a

data state, since the value of a variable at some point

during execution represents a portion of a data state.

The tool then observes any subsequent propagation of

the perturbed data state to successor output states

after execution is resumed. This process is repeated

a �xed number of times, with each perturbed data

state a�ecting the same variable at the same point in

execution. For instance, assume that after performing

this process on some variable 10 times the output is af-

fected 3 of those times. Then the resulting probability

estimate would be 0.3 with some con�dence interval

[3]. This process is performed using di�erent variables

as the recipients of the perturbed data states. Proba-

bility estimates found using the perturbed data states

can be used to predict which regions of a program are

likely and which regions are unlikely to propagate data

state errors caused by genuine software faults. These

probability estimates for this location along with those

for other locations in the software can then be used to

predict the software's testability.

2 Preliminary De�nitions and As-

sumptions

Several terms require formal de�nition. A data

state between two consecutive locations (where con-

secutive is determined dynamically) is a set of map-

pings between all declared and dynamically allocated

variables and their values at that point in execution for

a particular input. As a data state example, the data

state f(a,5), (b,5), (pc,10)g records that variables a

and b have the value 5, and that the program counter

has the value 10.

A location is what Korel [5] terms a single instruc-

tion: an assignment, input statement, output state-

ment, and the <condition> part of if or while state-

ment. Currently, this tool only considers assignment

statements and the <condition> part of an if orwhile

statements.
ow-of-control statements. Thus we re-

strict the application of the tool to these types of lo-

cations; other types of statements will eventually be

included in our de�nition and analyzed by our tool.

As our experience with the tool grows, we made add

other types of statements.

The execution of a location is considered atomic,

hence data states can only be viewed between loca-

tions. The de�nition of location does not include pro-

cedure calls; a procedure call is considered as having

as many locations as the procedure itself.

A data state error is an incorrect variable/value

pairing in a data state where correctness is determined

by an assertion for that location. A data state error

is frequently referred to as an infection, and these two

terms are used interchangeably. If a data state error

exists, the data state and variable with the incorrect

value at that point are termed infected. A data state

may have more than one infected variable.

If there exists at least one input from the program

input distribution for which a program fails, then we

say the program contains a fault with respect to the

input distribution. Even though we may know that a

fault exists in a program, we cannot in general identify

a single location as the exclusive cause of the failure.

For example, several locations may interact to cause

the failure, or the program can be missing a required

computation which could be inserted in many di�erent

places to correct the problem. However, if a program is

annotated with assertions about the correct data state

before and after a particular location l, and if there

exists an input from the input distribution such that

l's preceding data state is consistent with its assertion

and the succeeding data state violates its assertion,

then l contains a fault.

Propagation of a data state error occurs when a

data state error a�ects the output. In this de�nition

of propagation, we assume a data state error occurs af-

ter a location that either a�ects a variable or the pro-

gram counter. Cancellation of a data state error oc-

curs when infection occurs but propagation does not.

In order to perform PIE using PISCES, we expect

that an input distribution exists for the program, and

that the input distribution is the same one that will be

used during testing of the program. Since we hope to

make predictions concerning where faults are actually

occurring, we must use the same input distribution

that is used during testing to uncover the existence of

faults.

3 The Fault/Failure Model

PIE simulates the conditions of the three part

fault/failure model [10, 9, 17]. The fault/failure model

is simply the following three conditions that are both

necessary and su�cient for software failure to occur.

Also, the conditions must occur in the following se-

quence.

1. The input must cause the fault to be executed.

2. Once the fault is executed, the succeeding data

state must contain a data state error.

3. Once the data state error is created, the data

state error must propagate to an output state.

fspeci�cation: output 1 if a
2 + b

2 + c
2
< 900000

else output 0g

f1g rea a ;

f2g rea b ;

f3g rea c ;

f4g if (c = 50) t en

f5g d:= s r(a) � a

else

f6g d := s r(a);

f7g e := s r b ;

f8g f := s r c ;

f9g if d e f < 00000 t en

f10g riteln "1"

else

f11g riteln "0" ;

Figure 1: Program P.

Software has high quality if it produces correct out-

puts for each possible input. When software produces

an incorrect input, it has failed. The fault/failure

model relates program inputs, faults, data state errors,

and failures. Since faults and data state errors can

lead to failures, this model is tightly tied to software

quality. any theory of software quality must take ac-

count of these three steps. 3 demonstrates the model

by placing a fault in a small toy program|this demon-

stration shows the four types of execution scenarios

that can occur for a given (input, fault) pair. The

model is further described in [10, 9, 17].

The program P in Figure 1 is intended to display

the function shown in the braces. P has been coded

incorrectly. Although there are many ways of correct-

ing this program we will consider only one here: if the

fault in location 5, * , were removed from location

5, P would be correct.

Each execution of P falls into one of four scenarios:

1. The fault is not executed;

2. The fault is executed, but no data state error is

created;

3. The fault is executed, some data state error or

data state errors are created, but the program

output is correct anyway; or

4. The fault is executed, a data state error occurs,

and the data state error causes incorrect output.

Only executions of the �nal scenario type make the

fault visible during random testing. Propagation anal-

ysis studies the probabilities of scenarios 3 and 4 oc-

curring. For a �xed fault and a given input distribu-

oca ion a b c e u u

1 0
5 0 0 49 0
7 0 0 49 0 0
10 0 0 49 0 0 2401 1

Table 1: (0; 0; 49) as input to P .

oca ion a b c e u u

1 0
5 0 5 50 0
7 0 5 50 0 25
10 0 5 50 0 25 2500 1

Table 2: (0; 5; 50) as input to P .

tion,

Pr[Scenario (3) occurring] 1�Pr[Scenario (4) occurring]:

We next brie
y present an example of each type of

scenario. 5 explains the tool.

1. Scenario 1: The execution for the input (; ;)

(0; 0; 49) is displayed in Table 1. (In the follow-

ing tables, represents an unde�ned value.) The

value of 49 causes the selection of a path

that does not include the fault. Clearly any such

execution will not fail.

2. Scenario 2: The execution for input (0,5,50) is

shown in Table 2. The fault is reached but the

computation proceeds just as if there were no

fault present, because 0 prevents the fault

from impacting the execution. o data state er-

ror has been created.

3. Scenario 3: For input (5,1,50) the fault creates a

data state error in the succeeding data state, pro-

ducing 125 instead of 25 (See Table 3).

This data state error then propagates to location

7 where it is cancelled by the predicate, because

the predicate is true with or without the fault.

4. Scenario 4: Executing the program with input

(700,0,50) executes the fault which then creates

a data state error in the succeeding data state in

such a way that the data state error propagates

to the output (See Table 4).

Scenario (1) demonstrates that an execution of P can

only reveal information about the portion of P that is

executed. Scenarios (2) and (3) provide a false sense

of security to a tester because the fault is executed but

no visible failure results. Scenario (4) illustrates the

three necessary and su�cient conditions for a fault to

produce a failure.

oca ion a b c e u u

1 5
5 5 1 50 125
7 5 1 50 125 1
10 5 1 50 125 1 2500 1

Table 3: (5; 1; 50) as input to P .

oca ion a b c e u u

1 700

5 700 0 50 343000000
7 700 0 50 343000000 0
11 700 0 50 343000000 0 2500 0

Table 4: (700; 0; 50) as input to P .

The fault/failure model and the example above il-

lustrate the mechanisms by which a fault may or may

not propagate an error. Ideally, a static analysis would

be devised that would predict, for a given input distri-

bution, the propagation characteristics of a given pro-

gram location. nfortunately, no such static analysis

exists, nor is there likely to be any such static analy-

sis in the near future. Instead, the remainder of the

paper describes a dynamic technique that estimates

testability.

The Propa ation Analysis Al o-

rithm

Propagation analysis estimates the probability that

an altered data state will propagate it's e�ect to the

program output. To make this estimate, a data state

is perturbed (or altered) by changing the value of one

live variable in the data state. A variable is considered

live if the variable has any potential of a�ecting an

output computation. The set of variables that are

live is determined statically using data-
ow analysis

[23]. After perturbing a data state, program execution

resumes until termination (assuming no in�nite loop

occurs); the following algorithm tells how to handle

the suspected occurrence of an in�nite loop caused by

perturbed data states.

This process of �rst perturbing a live variable's

value and then resuming execution is repeated many

times. This repeated process yields the number of in-

stances out of attempts where perturbing a live

variable at some program location l made a dis-

cernible e�ect in the program's output. The value

is a rough estimate of the probability that an altered

value to variable will a�ect the program output.

The probability that live variable , whose value

is perturbed at program location l, a�ects program

output is denoted by l;a. The estimate of this prob-

ability is termed a propagation estimate; l̂;a denotes

this probability estimate and is computed according

to the following algorithm:

1. Set variable to 0.

2. andomly select a data state from the space of

data states that occur immediately after program

location l.

3. Perturb the value of live variable in this data

state, and execute the code that succeeds pro-

gram location l on both the perturbed and orig-

inal data states. There are issues that must be

addressed concerning how to perturb a value in a

data state, but they are out of the scope of this

paper. Those issues are addressed in [19, 6].

4. If a di�erent result occurs in the program output

between the perturbed data state and the origi-

nal data state, increment ; also, set a

time limit for termination of the program execut-

ing on the perturbed data state, and if execution

is not �nished in that time interval, increment

.

5. epeat algorithm steps 2-4 times.

6. ivide by yielding l̂;a.

(ore speci�c details of the formal propagation anal-

ysis algorithm can be found in [6, 19].)

A propagation estimate is a function of the program

location, the live variable, the input distribution, the

space of data states occurring after the program lo-

cation, the method used to perturb a value, and the

code that is potentially executed after the program

location. Propagation analysis �nds a propagation es-

timate for each member of the set of live variables at

each program location. This produces a large set of

propagation estimates|one propagation estimate per

live variable per program location.

A propagation estimate can be thought of as an

estimate of the e�ect that a live variable at a program

location has on the program's output. For instance,

if some live variable's value can be changed at some

program location l without producing any evidence

of this change in the program's output (i.e., a tiny

propagation estimate), then we have evidence that this

variable at this program location has little e�ect on the

program's computation. It may be that this variable

has a greater e�ect on the program's behavior at some

other program location.

. ract ca ca c r a at

A a s s

We anticipate that propagation analysis will be im-

mediately useful in two major tasks during software

development:

1. ocating sections of code that do not propagate

data state errors.

2. Investigating output behavior when data states

errors are created.

oth of these tasks are critical to improving soft-

ware quality. Statements and group of statements that

do not propagate data state errors are likely to hide

faults from testing. ocating these statements is crit-

ical to both programmers and testers. Programmers

should be wary of code regions where data state error

propagation is unlikely to occur, and should only allow

such code when it is part of the required functionality.

(Some speci�cations do include inherently low prop-

agation functions. See [21].) When these code sec-

tions are required despite their low propagation, the

programmer must focus analysis other than random

testing on these sections, since random testing is un-

likely to uncover problems there. A tester or quality

control analyst should also approach low propagation

code di�erently than other code; random testing can-

not be relied on to assure the quality of that code.

The process of propagation analysis can also be

used to explore the code's behavior during debugging

or maintenance. Traditionally, programmers use dif-

ferent inputs to a program to debug programs. ore

sophisticated recent debugging environments allow a

programmer to halt execution, change data values,

and resume execution. Propagation analysis suggests

a further re�nement of debugging technology: auto-

matically perturbing the data state of a variable (or

variables) and observing the e�ect on the output. As

with debugging environments, a facility for propaga-

tion analysis can help con�rm or reject hypotheses

about failure producing code, and can explore the pos-

sible rami�cations of proposed changes during code

maintenance. As propagation analysis improves the

process of debugging, it improves the quality of the

resulting code.

y hand, propagation analysis is time consuming

and tedious. Fortunately, almost all the analysis can

be automated. There are certain undecidable prob-

lems that can occur during propagation analysis, but

all of these problems can be inelegantly avoided in

the automated system. For example, whether a pro-

gram that has had an injected data state error will

halt is not decidable. We avoid this problem by plac-

ing a time limit on each execution; if termination has

not occurred within that time limit, we assume that

termination will never occur and we end the compu-

tation, labeling the execution as a propagated error.

Since the time limit is arbitrary, the tool may label a

long but eventual correct computation as a propagated

error. Although inelegant, the time limit solution is

both feasible and practical.

Propagation estimates are both practical and rel-

evant for software development; to make such esti-

mates more conveniently, PISCES allows a user dif-

ferent ways to exploit propagation analysis in an in-

teractive environment.

. a r a at A a s s

Propagation analysis is fundamentally a three stage

process:

1. Obtain a data state at a location in the code.

2. Perturb the data state.

3. Execute to completion and examine the result-

ing output to see if the perturbed data state has

changed the output.

A software tool for propagation analysis can o�er an

enormous savings in the manual e�ort required in each

of these stages. It also o�ers
exibility by providing

additional features that are impractical in a manual

technique. Several of these additional features will be

mentioned in this section.

In the following sections, we refer to PISCES mean-

ing the tool in its current design. ot all the functions

described have been completely implemented.

Obtaining a data state at a location can be ac-

complished by executing data from the start of the

program, or can be set arbitrarily by the user. The

data state can be perturbed manually or can be done

automatically using a perturbation function and the

current data state. \Completion" might be de�ned

as some internal point within the program other than

the end of execution as well, e.g., an intermediate data

state, such as used in �rm mutation testing[1]. After

all the aspects are speci�ed, PISCES performs the cal-

culations and delivers the results in a convenient form.

When PISCES is started, it prompts the interac-

tive user to specify several di�erent aspects required to

de�ne the desired propagation analysis. Each subsec-

tion below describes one required aspect. After these

selections are made (or defaults taken), PISCES per-

forms all executions necessary for the analysis that is

speci�ed by the user, and produces the requested re-

sults. This cycle of specify-execute-report is termed a

session. The tool can cycle through multiple sessions

without being restarted, by allowing the user to either

perform additional analyses on the program that is

currently loaded into PISCES, or by allowing the user

to bring in a di�erent program for analysis.

. . ele i he l i f l i

Propagation analysis can be performed for a single

location, a group of locations, or for an entire program.

Although the analysis does not require an oracle (as

does testing), the analysis can consume considerable

computer resources (the algorithm is quadratic in the

number of locations executed [18]). Therefore the user

should be allowed to specify exactly what code is to be

analyzed in order to not perform a complete analysis

if that is not desired. Currently, the tool allows the

user to specify:

1. The entire program.

2. One subprogram (procedure or function) at a

time.

3. A section of contiguous location within a program

or procedure or function.

4. One location at a time.

If option 1 is selected, PISCES identi�es all loca-

tions of the program that are either assignment state-

ments, or <condition> parts of if and while state-

ments. If option 2 is selected, the tool identi�es all lo-

cations of a module (that the user must then specify)

that are either assignment statements, or<condition>

parts of if and while statements. If option 3 is se-

lected, PISCES identi�es all locations of a code seg-

ment (that the user must then specify) that are either

assignment statements, or <condition> parts of if and

while statements. And if option 4 is selected, the user

must specify the exact location where the analysis is

to be performed. Analysis will subsequently be per-

formed after these and the options below are speci�ed.

. . le i e i

Propagation analysis involves multiple executions for

each location. For each such execution, the user must

specify a criterion which identi�es completion of an

execution. y default, program completion is the cri-

terion as shown in the algorithm, but PISCES also al-

lows the user to specify completion as reaching some

successor location of the location under analysis in the

code. The notion of a successor location is made dy-

namically, not statically. ote that there are some

locations that are both successor and predecessor lo-

cations of other locations. (An alternative to program

completion is required when, for example, the program

is designed to not terminate.)

If the analyst speci�es a completion location, that

location should be executed for all the executions pos-

sible from the location being exercised. If the comple-

tion point is not reached before program completion,

program completion will successfully end the analysis.

However, if a program does not complete and does not

execute the speci�ed completion location, the session

will halt only after the arbitrary time limit described

in the previous section.

Theoretically, a di�erent stopping criterion could

be speci�ed for each location the user wants exercised

in a single tool session. In its current design, however,

PISCES requires a single completion criterion for each

session.

. . ele i i le e e e

At a given location, more than one variable may be

involved in the computation. The user of the propaga-

tion tool may want one, all, or only some of these vari-

ables perturbed. In the example above, only variable

was perturbed; however, PISCES allows the user

to specify combinations of variables to be perturbed.

The tool gives the following choices for selecting the

variables to be perturbed during the analysis:

1. If an entire program or subprogram is to be ana-

lyzed, two choices are available:

(a) Perturb all statically declared and dynami-

cally allocated variables. ote in the algo-

rithm, only 1 variable is perturbed repeated

times to produce a single propagation es-

timate. However in PISCES, we allow the

user, if they wish, to perturb combinations

of variables, i.e., not necessarily one variable

at a time.

(b) All variables that are live. These are vari-

ables that do have the potential of a�ecting

the output. If the �rst option is used, then

potentially variables will be perturbed in a

section of the code where they truly have no

impact. This option is an optimization of

the �rst option.

2. If a section of code or a single statement is to be

analyzed, two choices are available:

(a) All statically declared and dynamically allo-

cated variables perturbed.

(b) ser selected variables perturbed through-

out the section.

. . e if i he e f le

e f i le i i-

e

Propagation analysis is an empirical technique that re-

lies on program executions to predict future program

behavior. As such, more executions should lead to

generally better predictions, because of the decrease

in the variance associated with an estimate. In more

technical terms, the more often we perform propaga-

tion analysis on a particular variable at a particular lo-

cation, the lesser the width of the resulting con�dence

interval that is associated with the propagation esti-

mate. The improved results (meaning the lesser the

width) must be balanced against the increased com-

putational time required to complete the analysis.

The propagation algorithm calls for a constant as

the default number of data states that will be sampled

for each variable selected for perturbation at a given

location. This is the that is required in Step 5 of the

algorithm. The site-speci�c default can be overridden

by the PISCES user. For a given session, the tool

requires a single number of sampled data states for all

the variables to be perturbed.

. . e if i he e f e

For a given location, the data states that the algorithm

needs can either come from executing a program input

until that location is reached, thus producing a com-

plete data state, or the user can specify the values that

they want to use as the data state. Also, the potential

exists for storing data states in a �le from previous

executions from which data states can be sampled.

Storage is still a feature that we are studying, and

have not yet implemented due to the feasibility prob-

lems of storing and retrieving such a large amount of

information.

When an entire program or subprogram is being

analyzed, PISCES requires that input to the program

be that of some input distribution, preferably the op-

erational distribution as described in 2 (more on this

option in the next section). If a single location is spec-

i�ed for a session, the tool allows three options for

obtaining data states:

1. Input data can be executed in order to create one

or more data states at that location.

2. The user can manually specify an initial data

state for the location.

3. The user can identify a �le with data states for

the location that they desire are used.

For each perturbation of a variable at a location, a

new data state could theoretically be used. However,

PISCES defaults to using a single data state several

times before using a new data state. The number of

times each data state is used can be adjusted by the

user. If the user de�nes data states manually or with

a �le, these data states are used over if more data

states are required by the session than the de�ned data

states. As an example, suppose that data state oc-

curs at a location where we wish to perturb several

di�erent variables at di�erent times during the analy-

sis. Then is used once for each of these variables.

. . e if i e f

Program input data can be speci�ed in two ways: a

�le of possible values or input distributions. Currently

the input distributions consist of a range of values and

a named standard de�nition (e.g., uniform or normal)

with parameters when appropriate. If the �le speci�ed

by the user does not contain enough data for the ses-

sion, the data are reused. Inputs are needed to create

the data states described in 6.5.

. . e if i e i i

When a session perturbs a variable, PISCES uses a

perturbation function. A perturbation function is the

mechanism for perturbing a data state. This mecha-

nism can perform its duties at various levels, depend-

ing on the way in which PISCES is implemented at

a particular installation. For instance, one method of

perturbing a data state is to actually inject source code

into the source program statically. This can then be

compiled and executed. Another method is to actually

inject object code into the object program statically.

This is a bit more di�cult, but can be accomplished.

et a third way is to monitor an executing program

externally and dynamically halt the program and alter

some memory location that it currently has allocated

to it. PISCES, in its �rst implementation, performs

the �rst of these.

The default perturbation function is a uniform dis-

tribution over the range 0:5 . . .1:5 where is the

current value of the variable in the data state. How-

ever, PISCES allows the user to de�ne a di�erent

range and a di�erent standard distribution as the de-

fault. The user can also de�ne a speci�c perturbation

function for any variable instance in the program. To

insure that results are repeatable, the perturbations

are implemented with a ehmer random number gen-

erator with a �xed initial seed [7].

. . e if i hi h e i e -

i le

Another concern that the user will be asked to de-

cide is upon which iterations of the location do they

wish to have the perturbation invoked. For instance,

suppose that a location is in a loop, and on a given

execution it is usually executed 1000 times. Then the

user will need to specify on which of those 1000 iter-

ations to apply a perturbation function. As it stands

now, PISCES can perturb on

1. All iterations of a location.

2. Or the user can manually specify each individual

iteration of the location on which they want the

perturbation function applied.

ost of our experimental evidence suggests that the

�rst option of these is the better. The conjecture that

this suggestion is based on can be simply stated:

e e In general, most faults create data

state errors on each iteration for which they are ex-

ecuted.

This conjecture is still under review.

. . i l i e l

y default, all results are written to a �le and a sum-

mary can displayed on the screen. Since the results

of propagation analysis on all locations will produce

huge amounts of information as well as take a long

period of time for a program of any size, the user will

undoubtedly opt to send that information to a �le. If

the user is only �nding a single propagation estimate,

then the wait will be less severe, and displaying the

information on the screen will become a practical al-

ternative. The user can optionally browse through the

results in the �le and ask for a more detailed summary

without leaving PISCES. Statistics from multiple ses-

sions concerning a single program can be accumulated.

However, the user is cautioned against accumulating

data from di�erent versions of a program, since any

changes in source code make the results from previ-

ous sessions incompatible with the new source code

results.

The In ection Analysis Al orithm

Infection analysis estimates the probability that a

syntactic mutant injected into a program location will

will cause a discernible di�erence in the data state

that results when the mutant is executed. In other

words, will a particular syntactic mutant of a program

location produce a value in the resulting data state

that is visibly di�erent than the value that is produced

by the original program location

Infection analysis is a technique that is similar to

wea mutation testing [2]; what is di�erent in these

techniques is the information collected. In infection

analysis, a set of syntactic mutants is created for each

program location. A restriction is placed on each syn-

tactic mutant|the syntactic mutant must also be se-

mantically di�erent for at least one input to the pro-

gram. This means that there must be at least one

program input such that when the syntactic mutant

is executed, the resulting data state is di�erent.

Without this requirement, a syntactic mutant could

be used during infection analysis that is not discernible

when the resulting data states are compared. In

this situation, such a syntactic mutant is functionally

equivalent to the original program location for all in-

puts given a particular input domain. For the reveal-

ing ability metric, such a situation is unacceptable,

because it suggests that the program location has a

greater ability to protect faults from detection, which

cannot be justi�ed from such a mutant. For example,

would not qualify as a syntactic mutant

of .

Infection analysis creates a set of syntactic mutants

for each program location. After creating a program

location's mutant set, each syntactic mutant and orig-

inal location is executed with a data state that is se-

lected at random from the space of data states that

occurs before the location. This process is repeated;

thus many data states are selected. This repeated pro-

cess yields the number of instances out of attempts

where injected syntactic mutant discernibly a�ects

the data state in a manner that is di�erent than the

original location. The value is a rough estimate of

the probability that injected syntactic mutant into

program location l discernibly a�ects the data state.

The goal is to determine the e�ect, , for each of these

syntactic mutants.

The probability that syntactic mutant a�ects the

data state di�erently than the original location does

is denoted by l; . An estimate of this probability is

termed an infection estimate and is denoted by ^
l; ;

^
l; is computed according to the following algorithm:

1. Set variable i f to 0.

2. Create a syntactic mutant for program location l

denoted as .

3. Present the original program location l and the

syntactic mutant with a randomly selected data

state from the space of data states that occur im-

mediately prior to program location l, and exe-

cute both program locations in parallel (the space

of data states used here is expected to be a func-

tion of the same program input distribution that

is used in 4.2.6).

4. Compare the resulting data states and increment

i f when the result computed by does

not equal the result computed by l for this par-

ticular data state.

5. epeat algorithm steps 3 and 4 times.

6. ivide i f by yielding ^
l; .

An infection estimate is a function of the program lo-

cation, the syntactic mutant used, and the space of

data states that occur immediately before the program

location.

The mutants that have been used in this research

have been limited to mutants of arithmetic expres-

sions and predicates. For arithmetic expressions, the

mutants considered in our research are limited to sin-

gle changes to a location|this is similar to the mu-

tations used in mutation testing [15, 2, 11, 12]. Our

assignment statement mutants include: (1) a wrong

variable substitution, (2) a variable substituted for a

constant, (3) a constant substituted for a variable, (3)

expression omission, (4) a variable that should have

been replaced by a polynomial of degree , and (5) a

wrong operator. For boolean predicates, the mutants

have included: (1) substituting a wrong variable, (2)

exchanging and , and (3) substituting a wrong

equality/inequality operator. We have purposely lim-

ited the syntactic changes to single changes to avoid

the explosion that occurs in the number of combina-

torial changes that could be made at each location.

In summary, infection analysis is a strengthened

weak mutation testing. Infection analysis extends

weak mutation testing to reveal information about

the data state. All of the problems associated with

generating mutants in mutation testing exist here as

well. In this initial stage of our research, we have

closely followed the mutation techniques developed by

[15, 2, 11, 12]; as our experience with PIE increases,

we expect to gain insight into the strengths and weak-

nesses of di�erent mutation techniques.

. ract ca ca c ct

A a s s

We anticipate that infection analysis will be use-

ful in locating sections of code that do not create

data state errors even when faults exist in these code

sections during software development. Statements or

groups of statements that do not create data state

errors are likely to hide faults during testing. We

admit however, that just as infection analysis is the

\weakest" part of the PIE model, any tool that imple-

ments infection analysis inherits its weaknesses. This

weakness comes from reliance on syntactic mutations,

which have been argued against for years with fault-

seeding techniques.

. a ct A a s s

Infection analysis is essentially a three stage pro-

cess:

1. Obtain a data state immediately before a location

in the code.

2. utate the location.

3. Execute the mutated location on the data state

and see if the resulting data state is di�erent than

the data state the the original \un-mutated" lo-

cation would have produced.

ike propagation analysis, a software tool for perform-

ing infection analysis can save enormous e�ort. This

section describes some of the more important features

that this tool provides.

. . ele i he l i f l i

The granularity at which infection analysis is currently

designed to be performed is at the location level. This

includes all assignment statements and <condition>

parts of if and while statements. The options cur-

rently available for infection analysis are more limited

than for propagation analysis. We can, however, tell

PISCES to perform infection analysis at each location

within a block of locations. In this case, the user al-

lows PISCES all control as to which mutants are made

at these locations. If the user wishes to individually

determine which mutants are used, see 5.2.3.

. . fe i l i e e

efore infection analysis is performed, a A (1)

parser creates the abstract syntax tree (AST) of the

location. Once the AST of the location is created, the

various rules for how to mutate can be applied to the

various nodes in the tree. Thus this preprocessor is

executed before any mutants are actually generated,

once the user has determined which location the anal-

ysis is to be performed at.

. . ele i he e e

Our tool allows the user to select either all possible

mutants that can be created for the location (accord-

ing to a set of prede�ned mutations de�ned above),

or allows the user to enter manually a single mutation

that is desired. If the user selects the \all mutants"

option, then a infection estimate is produced for each

mutant that is created. If the user enters a mutant

manually, then only a single infection estimate is pro-

duced.

. . e if i he e f le

e f i le fe i i e

Similar process as de�ned in 4.2.4.

. . e if i he e f e

Similar process as de�ned in 4.2.5.

. . e if i he e f

Similar process as de�ned in 4.2.6.

. . e if i hi h e i -

le he e

For locations that are potentially repeated by a single

input, there is the possibility of more than one data

state being available that is created by that input. We

denote this set of data states by . In this case, we

allow the user to either select a speci�c data state, for

instance, the 4th data state that is created (if a 4th

data state is created). Otherwise, PISCES uniformly

selects a data state within .

. . i l i e l

Similar process as de�ned in 4.2.9.

The ecution Analysis Al orithm

Execution analysis is the most straightforward and

least computationally expensive of the three tech-

niques. Execution analysis requires a program input

distribution. Execution analysis executes the code

with randomly selected inputs consistent with the in-

put distribution and records which program locations

are executed by each input. It is preferred that the

input distribution used during execution analysis will

be the operational distribution, since this is the dis-

tribution that is expected to be used during program

testing. It is required that the input distribution used

during execution analysis will be the same distribution

that is used to create the internal data state spaces

used by infection analysis and propagation analysis.

The probability that a particular program location

l is executed by a randomly chosen input from this

input distribution is denoted by l. Execution analysis

produces estimates of l. This probability estimate is

denoted by l̂ and is termed an execution estimate;

the method for computing l̂ is given in the following

algorithm:

1. Set array e e to zeroes, where the size of

e e is the number of program locations.

2. Instrument the program with w i e statements

at each program location that print the program

location number when the program location is ex-

ecuted. ake sure that if a program location is re-

peated more than once for some input, the w i e

statement for that program location is only exe-

cuted once for that input.

3. Execute randomly selected program inputs on

the instrumented program, producing strings of

program location numbers. It is assumed that the

program halts for each of these inputs, however

if it is suspected that this will not be true, even

with the close to being semantically and syntac-

tically correct assumption, then a process must

be inserted to ignore inputs on which execution

analysis appears to not be terminating and hence

select new inputs. This process will be performed

until the program is executed to termination on

inputs.

4. For

each program location number l in each string,

increment the corresponding e e l . If

it happens that some program location is exe-

cuted on each of the inputs, then when Step 4

is completed, e e would equal .

5. ivide each e e l by yielding an exe-

cution estimate l̂.

An execution estimate is a function of the program,

the program location, and a particular input distri-

bution. If the input distribution is changed, then the

estimates of execution analysis, as well as the probabil-

ity estimates from infection analysis and propagation

analysis, will in all likelihood change.

. ract ca ca c c t

A a s s

We anticipate that execution analysis will be imme-

diately useful in locating sections of code that are not

frequently executed. Statements or groups of state-

ments that are not frequently executed are likely to

hide faults during testing. Execution analysis is both

the \cheapest" in terms of computer time to execute

and implement of the three PIE analyses.

. a c t A a s s

Execution analysis is essentially a three stage pro-

cess:

1. Instrument the code to reveal when a location is

executed.

2. Execute the instrumented code many times.

3. Find the frequency with which a particular loca-

tion is executed.

ike the other two analyses, a software tool for per-

forming execution analysis can save enormous e�ort.

This section describes some of the more important fea-

tures that this tool provides.

. . e i l i e e

efore PISCES can perform execution analysis, a pre-

processor must run in order to uniquely identify all

syntactic structures satisfying the de�nition for a lo-

cation as de�ned in 2. This preprocessor will insert

\comments" into the program that uniquely numbers

locations, e.g., when the preprocessor parses the state-

ment , it will modify the source program

to look something like l i e

. However for the syntax i , this prepro-

cessor will not assign a unique location number, since

this does not satisfy the de�nition as a location. The

modi�ed source code that results after the preproces-

sor executes is the source code that infection analy-

sis and propagation analysis reads in. This execution

analysis preprocessor is the �rst subprocess of PISCES

that is executed.

. . ele i he l i f l i

The granularity at which execution analysis is cur-

rently performed is the location level (as described in

6.2.1). This includes all assignment statements and

<condition> parts of if and while statements. The

granularity options that are currently available for ex-

ecution analysis are more limited than for propagation

analysis.

. c t b r ts r

a c t st at

The greater the number of inputs selected, the

smaller the width of the accompanying con�dence

intervals of the execution estimates. Each execu-

tion estimate has an associated con�dence interval,

given a particular level of con�dence and the value

of used in the algorithm. The computational

resources available when execution analysis is per-

formed will determine in the algorithm. For ex-

ample, for 95 con�dence, the con�dence interval

is approximately 2 (1�) , where is the
number of occurrences of some event A
total number of attempts of event A

(is the sam-

ple mean) [13, 3]. Since the used in the algorithm

are expected to be large, 2 (1�) will likely be

insigni�cant. nless is close to 0 or 1, for 104,

2 (1�) is approximately 0:01; for 4 104,

2 (1�) is approximately 0:005 [13].

. . e if i he e f

Similar process as de�ned in 4.2.6.

. . i l i e l

Similar process as de�ned in 4.2.9.

Per ormin in its ntirety

Although PISCES can be forced to perform an sin-

gle type of analysis, most users will will want to per-

form all three analyses on their software. Thus the

question arises concerning which analysis should be

performed when.

In PISCES, execution analysis is performed �rst.

Execution analysis can indicate to the user whether

the needed data states will be available for infection

and propagation analysis. Also, the execution analysis

algorithm can be used as a \barometer" for determin-

ing how long much computer time the other analyses

will require to �nish. A feature can easily be added

to PISCES that will estimate for the user how long

the other two analyses will require given the length

of time execution analysis required. Which analysis

is performed after execution analysis does not matter.

This is decided by the user.

Testa ility Postprocessor

We have described in elaborate detail how this tool

performs the three main analyses. We have yet to de-

scribe how a prediction of testability is achieved from

the results of these analyses.

Assuming PISCES is performed in its entirety, we

have:

1. The estimate of the probability that a location is

executed;

2. The estimates of the probabilities, one estimate

for each syntactic mutant at the location, that

given the location is executed, the mutant will

adversely a�ect the program state; and

3. The estimates of the probabilities, one estimate

for each live variable at the location, that given

that the variable in the program state follow-

ing the location is infected, the output will be

changed.

A PISCES testability postprocessor inputs all prob-

ability estimates and allows the user several choices

(based on granularity) of how the testability predic-

tions will be displayed: either for a location, module,

or for the entire program. The equations governing

how these testability predictions are calculated are

found in [6]. This postprocessor uses the equations

from the cited reference and displays testability pre-

dictions. If the user solely wants the probability es-

timates and not the testability predictions, this post-

processor can be turned o�.

ummary

This paper has described a tool for studying the

likelihood that faults will be revealed during random

testing. This tool di�ers from previous fault-based

testing tools. For example, this tool is not solely based

on syntactic mutations such as the OTH A tool

[4, 16, 14].

The value of this tool to software quality is two-

fold: improved testing, and improved debugging. The

tool aids in testing by predicting locations likely to

hide faults. This has enormous importance for soft-

ware that is classi�ed as critical, meaning software

where even the most unlikely failure can result in a

loss-of-life. For example, if we were to predict that

faults are likely to result in failures, and after testing

we observed no failures, then we are somewhat more

con�dent that faults are not hiding in our program.

However if we predict that faults are unlikely to result

in failures, then we are less con�dent that faults are

not hiding. Furthermore, when a program is identi-

�ed as not likely to produce failures when faults exist,

PISCES identi�es those locations in the code most

likely to hide the faults. In this manner, this tool pro-

vides us with information about the program's testa-

bility and focuses attention on locations where testa-

bility is particularly low.

Ac ts

This work has been funded by a ational esearch

Council ASA- angley esident esearch Associate-

ship, ASA rant A -1-884, and ST Corp. Since

collaborating on this paper at ASA- angley e-

search Center, oas has accepted a position at e-

liable Software Technologies Corporation.

e erences

[1] . . W K. H . From

Weak to Strong, ead or Alive An Analysis

of Some utation Testing Issues. Proceedings

of the C SI S T IEEE nd or shop on

Software Testing, nalysis, and eri�cation, uly

1988. an�, Canada.

[2] W E. H . Weak utation Testing

and Completeness of Test Sets. IEEE Transac-

tions on Software Engineering, SE-8(4):371{379,

uly 1982.

[3] A . W. K . Simu-

lation odeling and nalysis. c raw-Hill ook

Company, 1982.

[4] . , . , W. cC , A.

O , K. K . An Extended Overview of

the othra Software Testing Environment. Pro-

ceedings of Second or shop on Software Testing

eri�cation and nalysis, uly 1988.

[5] K . PE AS-Program Error-

ocating Assistant System. IEEE Transactions

on Software Engineering, SE-14(9), September

1988.

[6] . , . , K. . Predict-

ing Where Faults Can Hide From Testing. IEEE

Software, 8(2), arch 1991.

[7] S K. P K W. . an-

dom umber enerators: ood Ones are Hard to

Find. Communications of the C , 31(10):1192{

1201, October 1988.

[8] Applying Sensi-

tivity Analysis Estimates to a inimum Fail-

ure Probability for Software Testing. In Proc.

of the th Paci�c orthwest Software uality

Conf., pages 362{371, Portland, O , October

1990. Paci�c orthwest Software uality Confer-

ence, Inc., eaverton, O .

[9] . . . Theoretical Insights into Fault-

ased Testing. Second or shop on Software

Testing, alidation, and nalysis, pages 45{62,

uly 1988.

[10] . A Theory of Error-based

Testing. Technical eport T -1395, niversity

of aryland, epartment of Computer Science,

April 1984.

[11] A. . O . utomatic Test ata eneration.

Ph thesis, epartment of Information and Com-

puter Science, eorgia Institute of Technology,

1988.

[12] A. . O . The Coupling E�ect: Fact or Fic-

tion. Proceedings of the C SI S T Third

Symposium on Software Testing, nalysis, and

eri�cation, ecember 1989. Key West, F .

[13] S. K. P . ecture notes on simulation, version

3.0. epartment of Computer Science, College of

William and ary in irginia, 1990.

[14] C , A P. ,

P . P othra: Scheduling u-

tants For Execution on a Hypercube. Proceed-

ings of the C SI S T ' Third Symposium

on Software Testing, nalysis, and eri�cation,

pages 58{65, ecember 1989.

[15] A. , . ,

F . S . Hints on Test ata

Selection: Help for the Practicing Programmer.

IEEE Computer, 11(4):34{41, April 1978.

[16] Software Engineering esearch Center. The

othra Software Testing Environment, eport

SE C-T -4-P edition. Purdue niversity, 1987.

[17] . . T . The E-

A odel of Error etection and its Applica-

tion. Proceedings of the C SI S T IEEE

nd or shop on Software Testing, nalysis, and

eri�cation, uly 1988. an�, Canada.

[18] . . ynamic ailure odel for Perform-

ing Propagation and Infection nalysis on Com-

puter Programs. Ph thesis, College of William

and ary in irginia, arch 1990.

[19] . . A ynamic Failure odel for Estimat-

ing the Impact that a Program ocation has on

the Program. In ecture otes in Computer Sci-

ence Proc. of the rd European Software Engi-

neering Conf., volume 550, pages 308{331, ilan,

Italy, October 1991. Springer- erlag.

[20] . . A Testing etric On The Ability Of A

Program To Hide Faults uring andom lack

ox Testing. In Proc. of the rd regon or -

shop on Software etrics, Silver Falls, O , arch

1991. Oregon Center for Advanced Technology

Education.

[21] . . Factors That A�ect Program Testa-

bilities. In Proc. of the th Paci�c orthwest

Software uality Conf., pages 235{247, Portland,

O , October 1991. Paci�c orthwest Software

uality Conference, Inc., eaverton, O .

[22] . . Sensitivity Analysis. In Proc. of the th

Int. Conf. on Testing Computer Software, pages

165{174, Washington, .C., une 1991. Interna-

tional Test and Evaluation Association.

[23] S E . W . Se-

lecting Software Test ata sing ata Flow In-

formation. IEEE Transactions on Software Engi-

neering, SE-11(4):367{375, April 1985.

